Calculus I
 Lecture 27

Feb 19-8:47 AM

Given $\quad x^{2}+y^{2}+z^{2}=9$,

$$
\frac{d x}{d t}=5, \quad \frac{d y}{d t}=-4
$$

Find $\frac{d z}{d t}$ when $(x, y, z)=(2,1,2)$

$$
\begin{aligned}
& \frac{d}{d t}\left[x^{2}+y^{2}+z^{2}\right]=\frac{d}{d t}[9] \\
& \frac{d}{d t}\left[x^{2}\right]+\frac{d}{d t}\left[y^{2}\right]+\frac{d}{d t}\left[z^{2}\right]=0 \\
& 2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}+2 z \cdot \frac{d z}{d t}=0 \\
& 2 \cdot 5+1 \cdot(-4)+2 \cdot \frac{d z}{d t}=0 \\
& 10-4+2 \frac{d z}{d t}=0 \quad \frac{d z}{d t}=-3 \\
& \text { It is decreasing }
\end{aligned}
$$

A particle is moving along the curve given by $x y=8 . \rightarrow y=\frac{8}{x}$
when it reaches $(4,2), y$-coordinate is decreasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$.

How fast is x-coordinate changing at that instant?

$x y=8$
$\frac{d}{d t}[x y]=\frac{d}{d t}[8]$
$\begin{gathered}\text { Product } \\ \text { Rule }\end{gathered} \quad \longrightarrow \frac{d x}{d t} \cdot 2+4 \cdot(-3)=0$
$\frac{d x}{d t} \cdot y+x \cdot \frac{d y}{d t}=0$
$\frac{d x}{d t}=6 \mathrm{~cm} / \mathrm{s} . \begin{aligned} & \text { It is } \\ & \text { increas }\end{aligned}$ increas ing.

Mar 25-8:52 AM

If a Snowball melts so its Surface area de creases at $1 \mathrm{~cm}^{2} / \mathrm{min} \quad \frac{d A}{d t}=-1 \mathrm{~cm}^{2} / \min _{A}=4 \pi r^{2}$ How fast is its diameter changing when diam meter is 10 cm ?

$$
\longrightarrow d=2 r \rightarrow r=\frac{d}{2}
$$

Sphere $\quad V=\frac{4 \pi r^{3}}{3}$
$A=4 \pi r^{2}$

$$
\begin{aligned}
& A=4 \pi\left(\frac{d}{2}\right)^{2} \quad A=4 \pi \cdot \frac{d^{2}}{4} \\
& -1=2 \pi \cdot 10 \cdot \frac{d}{d t}[d] \\
& \begin{array}{l}
A=\pi d^{2} \\
\frac{d A}{d t}=\pi \cdot 2 d \cdot \frac{d d}{d t}
\end{array} \\
& \frac{d}{d t}[d]=\frac{-1}{20 \pi} \mathrm{~cm} / \mathrm{min} \text {. } \\
& \text { It is decreasing. }
\end{aligned}
$$

A man starts walking north at $4 \mathrm{ft} / \mathrm{S}$ from a point P.

$$
5 \cdot 60 \cdot 4=1200 \mathrm{ft}
$$

5 minutes later, a woman starts walking south at $5 \mathrm{ft} / \mathrm{s}$ from a point 500 ft east of P.

At what rate the people moving apart 15 minutes after the woman starts walking?

Mar 25-9:11 AM

$$
f(x)=x^{4}-4 x^{3}
$$

1) find $f^{\prime}(x)$, and Solve $f^{\prime}(x)=0$

$$
\begin{array}{ll}
\text { find } f^{\prime}(x), \text { and Solve } f(x)=0 \\
f^{\prime}(x)=4 x^{3}-12 x^{2} & 4 x^{3}-12 x^{2}=0 \\
4 x^{2}(x-3)=0
\end{array} \quad \begin{aligned}
& \square x^{2}=0 \rightarrow x=0 \\
& x-3=0 \rightarrow x=3
\end{aligned}
$$

2) find $f^{\prime \prime}(x)$, and Solve $f^{\prime \prime}(x)=0$

$$
f^{\prime \prime}(x)=12 x^{2}-24 x \quad 12 x^{2}-24 x=0 \quad x=0 \rightarrow x=0
$$

3) Sign chart

x	$-\infty$	0	2	3	∞
$S^{\prime}(x)$	-	-	-	+	
$S^{\prime \prime}(x)$	+	-	+	+	

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{x^{2}+1} \\
& \text { 1) Find } \\
& f^{\prime}(x)=\frac{3 x^{2}\left(x^{2}+1\right)-x^{3} \cdot 2 x}{\left(x^{2}+1\right)^{2}}=\frac{x^{4}+3 x^{2}}{\left(x^{4}+3 x^{2}-2 x^{4}\right.} \\
& \left(x^{2}+1\right)^{2}
\end{aligned}
$$

a) Discuss all x-values where $f^{\prime}(x)=0$ or undefined.

$$
f^{\prime}(x)=0 \rightarrow \frac{x^{2}\left(x^{2}+3\right)}{\left(x^{2}+1\right)^{2}}=0 \rightarrow x^{2}\left(x^{2}+3\right)=0 \rightarrow x_{\substack{x^{2} \\ \text { Never o }}} \quad x=0
$$

$f^{\prime}(x)$ is undefined when $\left(x^{2}+1\right)^{2}=0$ Never Zero.
3) Find $f^{\prime \prime}(x)$

$$
\begin{aligned}
& \text { find } \\
& f^{\prime}(x)=\frac{x^{4}+3 x^{2}}{\left(x^{2}+1\right)^{2}} \quad f^{\prime \prime}(x)=\frac{\left(4 x^{3}+6 x\right) \cdot\left(x^{2}+1\right)^{2}-\left(x^{4}+3 x^{2}\right) \cdot 2\left(x^{2}+1\right) \cdot 2 x}{\left[\left(x^{2}+1\right)^{2}\right]^{2}} \\
& f^{\prime \prime}(x)=\frac{\left(x^{2}+1\right) \cdot\left[\left(4 x^{3}+6 x\right) \cdot\left(x^{2}+1\right)-\left(x^{4}+3 x^{2}\right) \cdot 4 x\right]}{\left(x^{2}+1\right)^{x^{3}}} \\
& 2 x^{2} \\
& f^{\prime \prime}(x)=\frac{2 x\left(2 x^{2}+3\right) \cdot\left(x^{2}+1\right)-4 x^{3}\left(x^{2}+3\right)}{\left(x^{2}+1\right)^{3}} \\
&=\frac{2 x\left[2 x^{4}+2 x^{2}+3 x^{2}+3 \rightarrow 2 x^{4}-6 x^{2}\right]}{\left(x^{2}+1\right)^{3}} \\
& f^{\prime \prime}(x)=\frac{2 x\left(3-x^{2}\right)}{\left(x^{2}+1\right)^{3}} \quad \begin{array}{ll}
f^{\prime \prime}(x)=0 \rightarrow & x=0, \\
x= \pm \sqrt{3}
\end{array}
\end{aligned}
$$

$S^{\prime \prime}(x)$ undefined

$$
\left(x^{2}+1\right)^{3}=0 \rightarrow \text { Never }
$$

Mar 25-9:34 AM

Sign chart

x	$-\infty$	$-\sqrt{3}$	0	$\sqrt{3}+\infty$	
$f^{\prime}(x)$	+	+	+	+	
$f^{\prime \prime}(x)$	+	-	+	-	

$$
f^{\prime}(x)=\frac{x^{2}\left(x^{2}+3\right)}{\left(x^{2}+1\right)^{2}} \quad f^{\prime \prime}(x)=\frac{2 x\left(3-x^{2}\right)}{\left(x^{2}+1\right)^{3}}
$$

Google Concavity on the graph of a function

